Mixed Finite Element Methods for Linear Viscoelasticity Using Weak Symmetry
نویسندگان
چکیده
Small deformations of a viscoelastic body are considered through the linear Maxwell and Kelvin-Voigt models in the quasi-static equilibrium. A robust mixed finite element method, enforcing the symmetry of the stress tensor weakly, is proposed for these equations on simplicial tessellations in two and three dimensions. A priori error estimates are derived and numerical experiments presented. The approach can be applied to general models for linear viscoelasticity and thus offers a unified framework.
منابع مشابه
An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملMixed finite element methods with applications to viscoelasticity and gels
Small deformations of a viscoelastic body are considered through the linear Maxwell and Kelvin-Voigt models in the quasi-static equilibrium. A robust mixed finite element method, enforcing the symmetry of the stress tensor weakly, is proposed for these equations on simplicial tessellations in two and three dimensions. A priori error estimates are derived and numerical experiments presented. The...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملMixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams
Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....
متن کامل